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were similar in all cases, lying 1n the range 50 - 200 Jiﬁé They appeared
to be approximately proportiona] to E-#, where E is the tensile (Young's)
‘modulus of the elastomer, as predicted by the theoretical treatment of
Lake and Thomas. Values for networks with polysulfidic crosslinks were
significantly higher than with monosulfide or C-C crosslinks, by about a
factor of 2. Values for carbon-black-filled materials were higher also,

by about the same factor, in comparison with the equivalent unfilled
materials. These effects are attributed to rupture of labile crossl1nks,
or bonds to carbon black, prior to main-chain rupture.t—
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Introduction

The tear strength or fracture energy of a material, denoted here
Gc’ represents the amount of mechanical energy required to propagate a
tear through a unit area of the material. Vulcanized rubber compounds
have a minimum tear strength under certain conditions, when visco-
elastic and other dissipative processes are minimized. This minimum
strength, denoted here the threshold strength, has been measured
previously for a number of elastomeric networks (1-4). The results
have been found to agree satisfactorily with a theoretical treatment
due to Lake and Thomas (5) both in absolute magnitude and in the
dependence upon the degree of crosslinking (3,4). In accordance with the
theory, the threshold tear strength is found to increase with increasing
length of the molecular strands comprising the network, approximately
in proportion to Mc* where Mc is the average molecular weight of a
network strand. Thus, the relationship for the threshold tear strength
G. . is

co
6 = kM1 (1)
The coefficient K relating the threshold tear strength to the
molecular weight of network strands is itself dependent upon the
chemical structure of the molecules comprising the network. It
depends upon the length of the main-chain bonds, the average mass
per main-chain atom, the flexibility of the chain and the dissociation
energy of the weakest main-chain bond. This dependence has been shown
to account for the particularly low threshold strengths of silicone
rubber and phosphonitrilic fluoroelastomer compared to polybutadiene

and polyisoprene (3,4). The principal factor responsible is
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the larger average mass per main-chain atom for the former two elastomers
compared to the latter.

Equation 1 can be reformulated in terms of the tensile (Young's)
modulus £ of elasticity of the material, using the theoretical relation (6)

M. = 3pRT/E
where R is the gas constant and T is absolute temperature. Equation 1
then becomes

6.y = Ky 77, (2)
and predicts that the threshold tear strength is a slowly decreasing
function of Young's modulus E.

Measurements have now been made of the threshold tear strengths for
several other elastomeric materials: a representative copolymer of
styrene and butadiene (25:75, SBR 1502, Firestone Tire and Rubber Company;
palychloroprene (Neoprene WRT, E. I. Du Pont de Nemours & Co.); a poly-
sulfide sealant material (Thiokol LP-32); and a copolymer of ethylene
and propylene (EPDM, Vistalon 4608, Exxon Chemical Company). These
materials represent a wide variety of chemical structures.

In addition, measurements have been made of the threshold strength
of molecular networks prepared by free-radical crosslinking, when the
molecules are interlinked by C-C bonds, and by sulphur crosslinking
systems of various kinds, in order to study the effect of crosslink type
upon the threshold tear strength.

Finally, some preliminary measurements are reported of the threshold

fracture energies for a carbon-black-reinforced elastomer.




Experimental
(a) Preparation of test strips

Mix formulations and vulcanization conditions are given in Table 1.
In all cases, vulcanized rubber sheets were prepared, about 1 - 2 mm
thick. Test strips were then cut from the sheets, about 2 cm wide and
6 cm long.
(b) Measurement of tear strength

The threshold tear strength is attained when dissipative processes
are minimized. Measur f the tear strength were therefore carried
out at high temperatures, aofg;o 150%C, at low rates of tearing,
1 - 10 um/s, and using samples swollen with mobile liquids. Test strips
were scored along a central line to a depth of about one-half of the
thickness, leaving the other half to be torn through, as shown schematically
in Figure 1. The tear strength Gc was calculated from the tear force F
as follows

6. =222 Fpu

where ks is the Tinear swelling ratio of the sample and w is the measured

2
s

the reduced number of network strands crossing a unit area in the swollen

width of the tear path (Figure 1b). The factor A_° takes into account
material. For unswollen specimens Ag = 1.

Polybutadiene (PB), SBR and EPDM materials were swollen with liquid
paraffin oil. Neoprene WRT and Thiokol LP-32 vulcanizates were swollen
with 1, 2, 4-trichlorobenzene (TCB).

(c) Measurement of £
Values of E were determined from tensile stress-strain relations at

small strains, using unswollen samples.




Results and discussion

Experimentally-determined values of the threshold tear strength
Gco are given in Table 2 for all of the materials examined. They
show several important features, as discussed below.
Polychloroprene materials

It proved possible to crosslink the polychloroprene elastomer
with either an oxide crosslinking system or a sulfur crosslinking
system, although in neither case was it found possible to obtain a
high degree of crosslinking. Values of Young's modulus E were con-
sequently rather low, Table 2. When conventional formulations were
used, capable of forming both types of crosslink, substantially
higher values of E were obtained.

Difficulties were experienced in all cases in determining the

threshold values of tear energy, Gc As shown in Figure 2, when

o'
the tear strength Gc of unswollen samples is plotted as a function
of temperature, it appears to reach a lower limit at temperatures of
about 120°C or higher, but these values are unexpectedly high,
150 - 500 J/mz. Moreover, at temperatures of 150°C or higher the
samples showed signs of rapid decomposition. Similar behavior was
shown previously by cis-polyisoprene materials (4). It is attributed
to the occurrence of strain-induced crystallinity at the tip of the
propagating tear, even at temperatures as high as 150°C, which
enhances the tear strength markedly.

Values of the tear strength of highly-swollen samples were found

to be much lower, comparable to those for other elastomeric materials,

and they did not vary significantly with the test temperature over




the range 80°C to 140°C or with the nature of the swelling liquid.
These values have therefore been taken as threshold values, although
no independent evidence of having reached threshold conditions was
obtained.
Polychloroprene, SBR, polysulfide, PB and EPDM

As the results given in Table 2 show, these materials all gave
roughly similar values of threshold tear strength, about 50-100 J/mz,
when crosslinked with oxide, C-C, or simple sulfur crosslinks. Thus,
there is no obvious effect of the varied chemical structure of the
polymer molecules, or of the crosslinks that connect them, upon the
tear strength.

When the values of threshold tear strength for these materials
were plotted against the corresponding values of Young's modulus E,
Figure 3, using logarithmic scales for both axes, the results were
found to be consistent with a Tinear relationship having a slope
of -1/2, in accordance with equation 2. Thus, the variations found
in the threshold tear strength for these different materials are
apparently largely accounted for by variations in the degree of cross-
Tinking. Neither the chemical structure of the polymer chain nor
of the crosslinks between them appears to be significant. This is
probably because of the close similarity in chain flexibility, bond
length, mass per main-chain atom, and bond dissociation energy for
these varied systems. However, other systems were found to be
significantly stronger, as discussed below. It has previously been
shown that polydimethylsiloxanes and phosphonitrilic fluoroelastomers
are substantially weaker, because of their greater mass per main-

chain atom (4). .




Sulfur crosslinking

In Table 2, the symbol 'Sn' is used to denote crosslinking systems
which yield predominately polysulfidic crosslinks, having more than
two sulfur atoms per crosslink. (The symbol 'Sx' is used to denote
systems which yield crosslinks of unknown structure, but probably
with two or fewer sulfur atoms per crosslink.)

The "inefficiently” crosslinked materials, with polysulphidic
crosslinks, were found to be significantly stronger than those with
monosulfidic, disulfidic or C-C crossiinks. At the same general level
of crosslinking, and therefore at similar values of Young's modulus,
the threshold tear strength was approximately twice as high.

It has been generally accepted that polysulfidic crosslinks give
stronger vulcanizates than monosulfidic or C-C crosslinks (7), but
the present measurements are the first ones to be carried out under
threshold conditions, as far as the authors are aware. Explanations
in terms of enhanced energy dissipation are thus ruled out. Instead,
it seems probable that crosslink rearrangement or scission before
rupture of the main chain is responsible for the observed strengthening
feature (7). In effect, the smali-strain elastic properties are those
of relatively highly-crosslinked, short-chain, vulcanizates while the
tear strengths arise from relatively lightly-crosslinked, long-chain
structures, as a result of rearrangement of the original crosslinks
under high stresses.

Carbon black reinforcement

The determination of the threshold tear strength for carbon-black-

reinforced materials was found to be more difficult than for the

corresponding unfilled materials. Low and constant values of tear




strength were only attained in the swollen state and at elevated
temperatures. Although these values have been taken to be threshold
values, there was no clear proof that threshold conditions had, indeed,
been achieved.

The values obtained in this way were found to be considerably higher,

about twice as high, as for the corresponding unfilied materials

(Table 2), being generally around 200 J/mz. Because the reinforced

compounds were based on sulfur crosslinking systems yielding poly-

sulfidic crosslinks (as is customary) the corresponding unfilled

materials were stronger than the simplest vulcanizates, by another

factor of about 2, as discussed previously. Thus, the carbon-black-

reinforced materials were 3-4 times stronger than the simplest

unreinforced vulcanizate of the same elastomer under threshold conditions.
The large reinforcing effect of carbon black under normal conditions

is well-known. It is interesting to note that a substantial degree

of reinforcement remains under threshold conditions, when dissipative

effects are minimized. It must therefore be ascribed to structural

effects. One possible mechanism of reinforcement, analogous to that

put forward in connection with polysulfidic crosslinking, would be

the detachment of adhering polymer molecules from particles of carbon

black at forces somewhat below those causing main-chain fracture.

Thus, again, the effective network strand would be initially short,

giving a stiff material, but at high stresses it would become longer,

and hence give a strong, tear-resistant, material.

Teto~
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Table 1. Mix formulations, in parts by weight, and vulcaniza-

tion conditions employed for preparing test specimens.

Polychloroprene, oxide crosslinks:
Neoprene WRT, 100; magnesium oxide, 2; zinc oxide, 5.

Vulcanized at 150°C for 30, 40 and 90 min.

Polychloroprene, sulfur crosslinks:
Neoprene WRT, 100; sulfur, 2; diorthotolyl guanidine (DOTG),
0.5; tetramethylthiuram disulfide, 1.5. Vulcanized at
140°C for 40 and 80 min.

Polychloroprene, oxide and sulfur crosslinks:
(i) Neoprene WRT, 100; sulfur, 1; tetramethylthiuram
monosulfide {TMTM), 1; DOTG, 0.5; magnesium oxide, 4;
zinc oxide, 5; stearic acid, 1.
(ii) Neoprene WRT, 100; sulfur 2; TMTM, 1; DOTG, 1;
magnesium oxide, 8; zinc oxide, 10.

Both compounds were vulcanized at 150%C for 2 h.

Polysulfide:
(i) Thiokol LP-32, 100; manganese dioxide, 4.
(i1) Thiokol LP-32, 100; manganese dioxide, 10.

Both compounds were vulcanized at 100%C for 1 h.




Table 1 (continued)
SBR:

FR-S 1502, 100; dicumyl peroxide, 0.5. Vulcanized at 150%C
for 2 h.

Polybutadiene (PB), carbon-carbon crosslinks:
Diene 35 NFA, 100; dicumy! peroxide, 0.2. Vulcanized at
150°C for 1 h.

Polybutadiene, EV formulation:
Diene 35 NFA, 100; zinc oxide, 5; sulfur, 0.6; zinc 2-eihyl
hexanoate, 2; 2-morpholinothiobenzthiazole (Santocure MOR),
1.44; tetrabutylthiuram disulfide, 0.6; Agerite Resin D, 1.

Vulcanized at 140°C for 40 min.

Polybutadiene, conventional sulfur recipe:
Diene 35 NFA, 100; zinc oxide, 3.5; stearic acid, 2.5;
sulfur, 2; Santocure MOR, 0.6; Philrich oil HAS, 5;
pheny1-2-naphthylamine (PBNA); 1. Vulcanized at 150°C for
1 h.

Polybutadiene, carbon-black-reinforced, conventional sulfur recipe:
(i) As the preceding unfilled recipe, plus:
N330 carbon black (Cabot Corporation, Vulcan 3), 50.
(11) As the preceding unfilled recipe, plus:
N765 carbon black (Cabot Corporation, Sterling
black), 50.

Both compounds were vulcanized at 150%C for 1 h.




Table 1 (continued)

Ethylene-propylene copolymer (EPOM), carbon-carbon crosslinks:
Vistalon 4608, 100; dicumyl peroxide, 2. Vulcanized at 160°C
for 2 h.

EPDM, sulfur crosslinks:
Vistalon 4608, 100; sulfur, 1.5; mercaptobenzothiazole, 0.6;
methyl ethyl tuads, 1.5; zinc oxide, 4; stearic acid, 1.

Vulcanized at 150°C for 40 min.

EPDM, carbon-black-reinforced, sulfur crosslinks:
As the preceding unfilled recipe, plus:

N330 carbon black (Cabot Corporation, Vulcan 3), 50.

.Vulcanized at 150° for 40 min.

12
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Table 2. Threshold tear strength Gco for various compounds. (The
mix formulations and vulcanization conditions are given

in the Appendix.)

Linear
Young's swelling
Crosslink modulus ratio 2
Elastomer type E (kPa) xs Gco (9/m©)
Swollen with
TCB !
Neoprene WRT -0- 370 2.58 120 !
" " 610 2.32 110 ‘
" " . 850 2.17 66
Neoprene WRT -Sx- 600 2.39 88
" " 850 2.17 70
Neoprene WRT -0- and 'Sx' 2050 1.6 48
" " 3200 1.4 65
Thiokol LP-32 '52' 640 1.7 96
" " 1010 1.67 66
Swollen with
paraffin oil
SBR 1502 -C- 2250 1.20 60
PB (Diene 35 NFA) -C- 2900 1.30 62
" -S-(EV) - 1.32 56
" -Sn- - 1.34 106
P8 + 50 phr
N330 carbon black -Sn- - 1.2 200
PB + 50 phr
N765 carbon black -Sn- - 1.36 ca 200
EPOM -C- 1.38 56
, (vistalon 4608)
i " -5, 1.44 ca 160
' EPDM + 50 phr
N330 carbon black -Sn- 1.3 210
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Figure captions

Figure 1. Method of measuring tear strength.

Figure 2. Tear strength Gc Vs temperature for polychloroprene and
SBR vulcanizates. Polychloroprene oxide crosslinks :AD, 05
sulfur crosslinks: +,0,0. SBR, C-C crosslinks: 0

Figure 3. Threshold tear strength Gco vs Young's modulus E.
Polychloroprene materials, 0; polysulfide, ®; polybutadiene,

@®; SBR, ®. The line is drawn with a slope of -i.
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